42 research outputs found

    Evaluation of Non-Parametric Selection Mechanisms in Evolutionary Computation: A Case Study for the Machine Scheduling Problem

    Get PDF
    Evolutionary Algorithms have been extensively used for solving stochastic, robust, and dynamic optimization problems of a high complexity. Selection mechanisms play a very important role in design of Evolutionary Algorithms, as they allow identifying the parent chromosomes, that will be used for producing the offspring, and the offspring chromosomes, that will survive in the given generation and move on to the next generation. Selection mechanisms, reported in the literature, can be classified in two groups: (1) parametric selection mechanisms, and (2) non-parametric selection mechanisms. Unlike parametric selection mechanisms, non-parametric selection mechanisms do not have any parameters that have to be set, which significantly facilitates the Evolutionary Algorithm parameter tuning analysis. This study presents a comprehensive analysis of the commonly used non-parametric selection mechanisms. Comparison of the selection mechanisms is performed for the machine scheduling problem. The objective of the presented mathematical model is to determine the assignment of the arriving jobs among the available machines, and the processing order of jobs on each machine, aiming to minimize the total job processing cost. Different categories of Evolutionary Algorithms, which deploy various non-parametric selection mechanisms, are evaluated in terms of the objective function value at termination, computational time, and changes in the population diversity. Findings indicate that the Roulette Wheel Selection and Uniform Sampling selection mechanisms generally yield higher population diversity, while the Stochastic Universal Sampling selection mechanism outperforms the other non-parametric selection mechanisms in terms of the solution quality

    Bunker Consumption Optimization in Liner Shipping: A Metaheuristic Approach

    Get PDF
    Taking into account increasing volumes of the international seaborne trade, liner shipping companies have to ensure efficiency of their operations in order to remain competitive. The bunker consumption cost constitutes a substantial portion of the total vessel operating cost and directly affects revenues of liner shipping companies. “Slow steaming” became a common strategy among ocean carriers to decrease vessel sailing speeds and reduce bunker consumption costs. However, decreasing vessel sailing speeds may require deployment of more vessels on a given shipping route to provide the agreed service frequency at each port of call. Several bunker consumption optimization methods were developed in the past to capture those conflicting decisions. This paper describes existing bunker consumption optimization methods, outlines their drawbacks, and proposes a new metaheuristic approach. Numerical experiments demonstrate efficiency of the suggested metaheuristic in terms of solution quality and computational time. DOI: 10.17762/ijritcc2321-8169.15065

    Models and Solutions Algorithms for Improving Operations in Marine Transportation

    Get PDF
    International seaborne trade rose significantly during the past decades. This created the need to improve efficiency of liner shipping services and marine container terminal operations to meet the growing demand. The objective of this dissertation is to develop simulation and mathematical models that may enhance operations of liner shipping services and marine container terminals, taking into account the main goals of liner shipping companies (e.g., reduce fuel consumption and vessel emissions, ensure on-time arrival to each port of call, provide vessel scheduling strategies that capture sailing time variability, consider variable port handling times, increase profit, etc.) and terminal operators (e.g., decrease turnaround time of vessels, improve terminal productivity without significant capital investments, reduce possible vessel delays and associated penalties, ensure fast recovery in case of natural and man-made disasters, make the terminal competitive, maximize revenues, etc.). This dissertation proposes and models two alternatives for improving operations of marine container terminals: 1) a floaterm concept and 2) a new contractual agreement between terminal operators. The main difference between floaterm and conventional marine container terminals is that in the former case some of import and/or transshipment containers are handled by off-shore quay cranes and placed on container barges, which are further towed by push boats to assigned feeder vessels or floating yard. According to the new collaborative agreement, a dedicated marine container terminal operator can divert some of its vessels for the service at a multi-user terminal during specific time windows. Another part of dissertation focuses on enhancing operations of liner shipping services by introducing the following: 1) a new collaborative agreement between a liner shipping company and terminal operators and 2) a new framework for modeling uncertainty in liner shipping. A new collaborative mechanism assumes that each terminal operator is able to offer a set of handling rates to a liner shipping company, which may result in a substantial total route service cost reduction. The suggested framework for modeling uncertainty is expected to assist liner shipping companies in designing robust vessel schedules

    Highway - Rail Grade Crossing Identification and Prioritizing Model Development

    Get PDF
    The United States Department of Transportation (US DOT) provides funding to state DOTs to implement highway-rail grade crossing improvement programs. These programs are suspected to develop particular safety improvement actions in order to decrease the number of accidents at highway-rail grade crossings. The current work is directed to consider various hazard index/accident prediction methodologies, carefully investigate hazard index/accident prediction methods, applied by Tennessee Department of Transportation (TDOT), develop a model to allocate available monetary resources for upgrades of highway-rail grade crossings in the State of Tennessee and maximize the total benefits in terms of accident and severity reduction. Two different approaches are proposed and a number of numerical experiments are presented to evaluate each approach

    A New Simulation Model for a Comprehensive Evaluation of Yard Truck Deployment Strategies at Marine Container Terminals

    Get PDF
    Taking into account increasing volumes of the international seaborne trade and increasing port congestion, marine container terminal operators have to improve efficiency of their operations in order to provide timely service of vessels and avoid product delivery delays to customers. This paper focuses on improvement of container transfer operations between the seaside and the marshaling yard and proposes five yard truck deployment strategies. Performance of the considered marine container terminal is evaluated under each one of the yard truck deployment strategies via simulation. Different performance indicators are estimated to determine how the suggested yard truck deployment strategies will affect all equipment types, involved in container handling and transfer. Results from the extensive simulation experiments showcase that all five yard truck deployment strategies provide similar values of vessel service and quay crane performance indicators, while the shortest distance based yard truck deployment strategy yields superior gantry crane and yard truck performance indicators. The worst values of performance indicators are recorded for the random yard truck deployment strategy. Furthermore, the developed simulation model can serve as an efficient planning tool for marine container terminal operators and enhance productivity of the available equipment

    A Self-Adaptive Evolutionary Algorithm for the Berth Scheduling Problem: Towards Efficient Parameter Control

    No full text
    Since ancient times, maritime transportation has played a very important role for the global trade and economy of many countries. The volumes of all major types of cargo, which are transported by vessels, has substantially increased in recent years. Considering a rapid growth of waterborne trade, marine container terminal operators should focus on upgrading the existing terminal infrastructure and improving operations planning. This study aims to assist marine container terminal operators with improving the seaside operations and primarily focuses on the berth scheduling problem. The problem is formulated as a mixed integer linear programming model, minimizing the total weighted vessel turnaround time and the total weighted vessel late departures. A self-adaptive Evolutionary Algorithm is proposed to solve the problem, where the crossover and mutation probabilities are encoded in the chromosomes. Numerical experiments are conducted to evaluate performance of the developed solution algorithm against the alternative Evolutionary Algorithms, which rely on the deterministic parameter control, adaptive parameter control, and parameter tuning strategies, respectively. Results indicate that all the considered solution algorithms demonstrate a relatively low variability in terms of the objective function values at termination from one replication to another and can maintain the adequate population diversity. However, application of the self-adaptive parameter control strategy substantially improves the objective function values at termination without a significant impact on the computational time

    A Diploid Evolutionary Algorithm for Sustainable Truck Scheduling at a Cross-Docking Facility

    No full text
    Supply chains have become more time-sensitive in recent years. Delays in supply chain operations may cause significant negative externalities, including lost sales and customers. In order to facilitate the product distribution process within supply chains, reduce the associated delays, and improve sustainability of the supply chain operations, many distribution companies started implementing the cross-docking technique. One of the challenging problems in management of the cross-docking facilities is efficient scheduling of the arriving trucks. This study proposes a novel Diploid Evolutionary Algorithm for the truck scheduling problem at a cross-docking facility, which—unlike the Evolutionary Algorithms presented in the cross-docking literature to date—stores the genetic information from the parent chromosomes after performing a crossover operation. The objective of the formulated mathematical model is to minimize the total truck service cost. The conducted numerical experiments demonstrate that the optimality gap of the developed algorithm does not exceed 0.18% over the considered small size problem instances. The analysis of the realistic size problem instances indicates that deployment of the developed solution algorithm reduces the total truck handling time, the total truck waiting time, and the total truck delayed departure time on average by 6.14%, 32.61%, and 34.01%, respectively, as compared to a typical Evolutionary Algorithm. Furthermore, application of the diploidy concept decreases the total truck service cost by 18.17%

    Green vessel scheduling in liner shipping: Modeling carbon dioxide emission costs in sea and at ports of call

    No full text
    Considering a substantial increase in volumes of the international seaborne trade and drastic climate changes due to carbon dioxide emissions, liner shipping companies have to improve planning of their vessel schedules and improve energy efficiency. This paper presents a novel mixed integer non-linear mathematical model for the green vessel scheduling problem, which directly accounts for the carbon dioxide emission costs in sea and at ports of call. The original non-linear model is linearized and then solved using CPLEX. A set of numerical experiments are conducted for a real-life liner shipping route to reveal managerial insights that can be of importance to liner shipping companies. Results indicate that the proposed mathematical model can serve as an efficient planning tool for liner shipping companies and may assist with evaluation of various carbon dioxide taxation schemes. Increasing carbon dioxide tax may substantially change the design of vessel schedules, incur additional route service costs, and improve the environmental sustainability. However, the effects from increasing carbon dioxide tax on the marine container terminal operations are found to be very limited

    Minimizing the Total Liner Shipping Route Service Costs via Application of an Efficient Collaborative Agreement

    No full text
    corecore